Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38611997

RESUMO

Surface residual stresses in welded specimens significantly influence properties such as fatigue resistance, fracture toughness, and the superplasticity of joints. In this study, we employed friction stir welding, a well-established joining method, to weld dissimilar titanium alloys. By combining two distinct titanium alloys, we aimed to harness their unique properties when subjected to cyclic loading, impact, or superplastic forming processes. Utilizing X-ray diffraction, macroscopic surface stresses were assessed in dissimilar titanium alloys (Ti-6242 standard grain (SG) and Ti-54M) welded via friction stir welding, assuming a linear lattice distortion. The study accounted for misalignment, significant distortion, and grain refinement in the stir zone. Macroscopic surface residual stresses were quantified on the weld surface and at a depth of 1.5 mm beneath it within a square cross-section (1 × 1 mm2) by oscillating the specimen in the (X-Y) direction. The sin2φ method, implemented through the LEPTOS® (v7.8) software, was employed for residual stress measurement. The analysis of the results was conducted with respect to different rotation and traverse speeds. It was noted that at the center (CEN) of the weld, commonly referred to as the weld nugget, approximately 50 MPa of tensile stress was observed under the lowest values of both tool rotation speed and traverse speed. Tensile residual stresses were evident at the boundaries and within the stir zone. No discernible pattern was observed at the specified locations. Notably, the resultant values of residual stress, influenced by rotation and traverse speeds, exhibited asymmetry.

2.
Heliyon ; 10(4): e25971, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38375269

RESUMO

Electron beam melting is a powder bed fusion process capable of manufacturing thin structural features. However, as the thickness of these features approaches typical microstructure grain sizes, it becomes vital to understand how the manufacturing process contributes to local crystallographic texture and anisotropy in micromechanical response. Therefore, this article investigates Ti-6Al-4V ⍺/ß-phase formation within thin components using a variety of experimental and numerical approaches. Optical and scanning electron microscopy are used to determine through-thickness distributions of prior-ß width ([top, middle, bottom]:[81.2 ± 44.2, 76.02 ± 30.4, 75.6 ± 31.2] µm), ⍺-lath thickness ([top, middle, bottom]:[1.0 ± 1.3, 1.3 ± 1.2, 1.4 ± 1.8] µm; average), and ⍺/ß-phase fractions ([top, middle, bottom]:[0.87 ± 0.05, 0.82 ± 0.03, 0.88 ± 0.03]; average). Manufacturing process (i.e., "logfile") data is used within a layer-by-layer finite element "birth/death" model. This model is loosely coupled with the Kim-Kim-Suzuki phase field model and a CALPHAD thermodynamic database to predict ⍺-lath growth throughout the process. In general, good correlation is found between the experimental data and the predicted temperature history, ⍺-lath coarsening, and phase fraction. This indicates that these tools would be useful in predicting process-structure-properties-performance relationships for thin features.

3.
Data Brief ; 22: 164-168, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30581921

RESUMO

In this paper we present the dataset used for plotting figure c (of graphical abstract) and figure 2 of the related article, "Friction stir welding of titanium alloys: A review" (Gangwar and Ramulu, 2018). For conventional descriptions, the majority of the data is either represented in forms of tables or graphs (2-dimensional, 3-dimensional and interactive). However, the presence of multiple variables and their interdependence require not only more dimensions but also a simple representation without clustering the information. This dataset includes the values of elements in the matrix used to plot Circos figures and describes their correspondence with the interrelation of columns and rows of matrix in the recurring figures in the article (Gangwar and Ramulu, 2018). This article also focuses on the width of ribbons in figure c and figure 2 that are connected via multiple alphabetic elements in rows and columns of the matrix.

4.
Acta Biomater ; 67: 319-330, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29248639

RESUMO

Fish scales serve as a flexible natural armor that have received increasing attention across the materials community. Most efforts in this area have focused on the composite structure of the predominately organic elasmodine, and limited work addresses the highly mineralized external portion known as the Limiting Layer (LL). This coating serves as the first barrier to external threats and plays an important role in resisting puncture. In this investigation the structure, composition and mechanical behavior of the LL were explored for three different fish, including the arapaima (Arapaima gigas), the tarpon (Megalops atlanticus) and the carp (Cyprinus carpio). The scales of these three fish have received the most attention within the materials community. Features of the LL were evaluated with respect to anatomical position to distinguish site-specific functional differences. Results show that there are significant differences in the surface morphology of the LL from posterior and anterior regions in the scales, and between the three fish species. The calcium to phosphorus ratio and the mineral to collagen ratios of the LL are not equivalent among the three fish. Results from nanoindentation showed that the LL of tarpon scales is the hardest, followed by the carp and the arapaima and the differences in hardness are related to the apatite structure, possibly induced by the growth rate and environment of each fish. STATEMENT OF SIGNIFICANCE: The natural armor of fish, turtles and other animals, has become a topic of substantial scientific interest. The majority of investigations have focused on the more highly organic layer known as the elasmodine. The present study addresses the highly mineralized external portion known as the Limiting Layer (LL). Specifically, the structure, composition and mechanical behavior of the LL were explored for three different fish, including the arapaima (Arapaima gigas), the tarpon (Megalops atlanticus) and the carp (Cyprinus carpio). Results show that there are significant differences in the surface morphology of the LL from posterior and anterior regions in the scales, and between the three species. In addition, the composition of the LL is also unique among the three fish. Results from nanoindentation showed that the LL of tarpon scales is the hardest, followed by the carp and the arapaima and the differences in hardness are related to the apatite structure, possibly induced by the growth rate and environment of each fish. In addition, a new feature was indentified in the LL, which has not been discussed before. As such, we feel this work is unique and makes a significant contribution to the field.


Assuntos
Escamas de Animais/anatomia & histologia , Peixes/anatomia & histologia , Animais , Fenômenos Mecânicos , Imagem Óptica , Análise Espectral Raman , Propriedades de Superfície
5.
Materials (Basel) ; 9(9)2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28773866

RESUMO

An experimental investigation was conducted to determine the application of die sinker electrical discharge machining (EDM) as it applies to a hybrid titanium thermoplastic composite laminate material. Holes were drilled using a die sinker EDM. The effects of peak current, pulse time, and percent on-time on machinability of hybrid titanium composite material were evaluated in terms of material removal rate (MRR), tool wear rate, and cut quality. Experimental models relating each process response to the input parameters were developed and optimum operating conditions with a short cutting time, achieving the highest workpiece MRR, with very little tool wear were determined to occur at a peak current value of 8.60 A, a percent on-time of 36.12%, and a pulse time of 258 microseconds. After observing data acquired from experimentation, it was determined that while use of EDM is possible, for desirable quality it is not fast enough for industrial application.

6.
Int J Environ Health Res ; 14(2): 143-9, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15203459

RESUMO

Human response to blast induced ground vibration and air-overpressure/noise is a major concern of current mining activity. This is because the fact that mines are fast transgressing the habitats and people are getting educated. Consequently the response of humans is changing and expectedly will increase in days to come with no viable and economic alternative to blasting--an essential component of mining. The response of humans can be purely physiological or psychological in nature or combination of both depending upon the situation and conditions of mining. Where physiological response is documented in terms of effects on ears and lungs there is a meager amount or no literature available regarding effects of blasting on the brain. Moreover, the studies on transitory phenomenon like the effects of blasting on humans are rare in comparison to the whole body vibration studies. This study was designed to address the issues as a precursor to a major initiative. The preliminary investigations conducted with the monitoring of EEG responses of humans to vibration and air-overpressure/noise due to blasting revealed that there is no major response of the brain to transitory vibrations and noise.


Assuntos
Explosões , Mineração , Ruído Ocupacional/efeitos adversos , Exposição Ocupacional , Vibração/efeitos adversos , Adulto , Idoso , Córtex Cerebral/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...